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What is Denovo 
•  Denovo is a radiation transport code used in 

advanced nuclear reactor design 
•  It solves for the density of particle flux in a 3-D 

spatial volume such as a reactor 
•  In particular, it solves the six-dimensional linear 

Boltzmann equation (3-space, 2-angle, 1-energy) 
•  Denovo scales up to 200K cores on ORNL’s 2.3PF 

Jaguar system. 
•  It is part of the CASL project (Consortium for 

Advanced Simulation of Light Water Reactors) and 
the SCALE code system (Standardized Computer 
Analyses for Licensing Evaluation) 

•  It was selected as an early port code for Titan 
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Denovo Algorithms 
•  Primary algorithms: the discrete ordinates 

method, 3-D sweep, GMRES linear solver and 
various eigensolvers, e.g., Arnoldi 

•  The execution time profile has a very prominent 
peak: nearly all the execution time (80-99%) is 
spent in a 3-D sweep algorithm. 

•  Because of this, the 3-D sweep must be the 
central focus of any effort to port Denovo to a 
accelerator-based system 

•  However, the sweep is a complex algorithm that 
is difficult to parallelize efficiently. 
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3-D Sweep Algorithm: Description 
•  Denovo is based on a 3-D structured grid 
•  The data dependency for the sweep operation is 

specified by a 4-point stencil 
•  The result at every gridcell is dependent on the 

result at the immediately lower gridcells in X, Y 
and Z. 

•  This induces a wavefront computation pattern – a 
sequence of diagonal planes sweeping in from a 
corner. 

•  Thus, results at the far side of the grid cannot be 
computed until results at the near side are 
completed 

•  For standard parallel grid decompositions, most 
of the processors will be idle much of the time 
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Parallel Sweep: 1. High Level View 

•  The KBA algorithm solves this problem in parallel using a novel 2-D 
mapping of the problem to processors 

•  The calculation is started at one corner of the grid, other processors start 
work when their input data is available 
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Sweep Algorithm: 2. Per-Cell View 

In addition to this “macro” view for the whole grid, at each gridcell there is 
also significant work to be done: 
The input vector for the sweep is initially stored with a “moments” axis.  (1) 
This moments axis must be transformed to an “angles” axis.  (2) Then some 
element-level calculations are done, for the element unknowns.  (3) Finally, 
the result must be transformed back to moments and the result stored in the 
output vector. 
Thus we have these steps at each gridcell: 

1.  Load part of the input vector 
2.  Do small matrix-vector product to convert from moments to angles 
3.  Do discretization-related calculations on element unknowns 
4.  Do small matrix-vector product to convert from angles to moments 
5.  Store result in the output vector 
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GPU Architecture 
•  The NVIDIA Fermi processor is a manycore 

architecture with 512 compute cores. 
•  They are programmed via threads. 
•  Threads are arranged in groups of 32 (warps) 

that compute in lockstep. 
•  These are collected into threadblocks. 
•  Threadblocks are independent and form a grid. 
•  Programs access main (“global”) memory. 
•  Programs can also use a faster, smaller 

“shared” memory – a programmable cache. 
•  Also L1 cache, L2 cache, registers. 
•  Connected to CPU by PCIe-2 bus 

Images courtesy NVIDIA 
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How to Program the Sweep on the GPU? 

•  Sweep is a complex algorithm, with many dimensions.  Directives may 
not be flexible enough or expose enough hardware functionality to get the 
needed performance. 

•  NVIDIA support OpenCL, but going forward CUDA will be better 
supported and more in-sync with new hardware features. 

•  Thus use CUDA.  Use C++ for consistency with Denovo base language. 

•  Decide what language / parallel API to use to program the GPU. 
•  Options: 

1.  CUDA: a minor extension of C/C++ for GPU thread programming, 
also available for Fortran 90 

2.  OpenCL: a multi-vendor standard similar to CUDA 
3.  Compiler directives: similar to OpenMP (PGI, CAPS, Cray, ...) 
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Refactor or Rewrite? 

•  Would prefer to refactor existing code, if possible. 
•  However, the current Denovo sweep has multiply-nested loop structure 

spanning multiple levels of the call tree.  This needs to be permuted, 
which would require major code restructuring.  Also, memory access 
pattern is not properly localized for the GPU. 

•  Number of lines of code for the sweep not huge (~ thousands). 
•  Thus, a rewrite probably easier. 
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Sweep Performance Characteristics 

•  In order to port to GPU, need to understand the performance behavior of 
the sweep algorithm in detail 
–  Data access pattern 
–  How much time spent in flops, memory access, communication 
–  Which problem dimensions can be thread-parallelized on the GPU 
–  Is there enough space in the registers, caches to get the needed data reuse 

•  Rethink the algorithm from first principles.  How do we restructure the 
algorithm to improve data reuse, expose thread parallelism? 
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A Sweep Code Performance Model 
•  It can be very useful to have a formula that expresses the runtime of a 

code in terms of: 
•  Flop counts, memory access counts, message counts, ... 
•  Hardware characteristics: clock speeds, bandwidths, ... 

•  Helps guide the parallelization / optimization process. 
•  Can understand performance tradeoffs for design decisions before writing 

any code. 
•  Understand what dominates (floating point operations, PCIe-2 transfer, 

memory bandwidth, etc.) – what is most in need of optimization. 
•  Also after writing the code helps diagnose whether performance of the 

code is where it should be. 
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Sweep Code Programming Model/Style 
•  Code is in C++. 
•  Decided to implement a single code that can run on both CPU and GPU.  

Makes sense for maintainability, also greatly helps debugging. 
•  Following older example of MPI, try to put CUDA-related code in one 

place, e.g., facade class.  Want to be ready for unknown programming 
models coming in the future. 
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Mapping the Algorithm to the GPU 
We have many candidate dimensions for parallelism: 
space (3), energy, moment/angle, octant, and also 
unknown (4 unknowns per gridcell for this 
discretization). 
We are told by NVIDIA that we need 4K-8K threads for 
the GPU to keep all GPU streaming multiprocessors 
busy and cover various latencies. 
Also need the right kind of parallelism – proper 
decoupling of data. 
Also must have good memory access patterns (reuse of 
data loaded from global memory, coalesced stride-1 
memory references, good use of registers, shared 
memory, caches on the GPU). 
Approach: explore each problem dimension for 
potential thread parallelism. 



14 

1. Parallelism in Energy  
•  Denovo exposes energy as a parallel dimension. 
•  Values for different energies are entirely independent in the 3-D sweep, 

thus the algorithm is embarrassingly parallel along this axis (!). 
•  Model problem has 256 energy groups – this helps, but we need to look 

further in order to get to 4K-8K threads. 
•  Also need to use some of this 256 for node parallelism. 
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2. Parallelism in Octant  
•  Algorithm requires sweeps from 8 different directions. 
•  Sweep directions are independent, thus another 8X thread parallelism (!). 
•  Small issue: different octants update the same output vector, so we need 

to schedule properly to avoid write conflicts. 
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3. Parallelism in Space  

•  We have this recursion, as mentioned before, that makes the 
computations non-independent. 

•  However, the global KBA algorithm can be applied at this small scale (!). 
•  Set up block wavefronts, assign blocks to threads. 
•  Sync between block wavefronts. 
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Performance  

•  With this paralleization scheme, code performed at only about 1% of peak 
flop rate, much lower than predicted by the performance model 

•  Reason: excessive use of registers caused spillage to main memory, thus 
poor performance 

•  Needed to find more/better axes of parallelism 
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4. Parallelism in Angle, Moment 

•  A new strategy to parallelize the moment/angle axes at the gridcell level 
– map these axes to CUDA threads in-warp. 

•  Small dense matrix-vector products are perfect for thread parallelism – 
store vector in shared memory, relieve the register pressure. 

•  The two small matrices are the same across all gridcells (!), so they can 
be retained in L1 cache, to reduce a potentially high source of memory 
traffic. 
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Summary of Mapping of Dimensions 

GPU 
Compute 
Hierarchy    

Thread 
 

 Warp 
  

Thread 
  block  

 Grid  
  

registers 32 threads 
execute in 
lockstep 

up to 48 warps 
access shared memory; 

can sync warps 

fully independent 
threadblocks 

Denovo 
Problem 
Dimensions 

octant 
energy 

fully 
decoupled 

space 
use KBA; 
need sync 

moment 
angle 
use 

threads 
in a warp 

per-gridcell 
unknowns 

tightly 
coupled 
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Results: Test Problem 

•  32x32x128 gridcells 
•  16 energy groups 
•  16 moments 
•  256 angles 
•  Linear discontinuous elements – 

4 unknowns per gridcell 
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Results: Sweep GPU Performance 

AMD	  Istanbul	  	  1	  
core	  

NVIDIA	  C2050	  
Fermi	  

Ra<o	  

Kernel	  compute	  -me	   171	  sec	   3.2	  sec	   54X	  
PCIe-‐2	  -me	  (faces)	   -‐-‐	   1.1	  sec	  

TOTAL	   171	  sec	   4.2	  sec	   40X	  

•  Single core (AMD Istanbul) / single GPU (Fermi C2050) comparison 
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NVIDIA Fermi is 40X faster 
than single Opteron core 
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Observations 

•  40X faster than Istanbul core. 
•  Istanbul is 6-core, so Fermi about 7X faster than the entire Istanbul processor. 
•  For both CPU and GPU, code attains about 10% of peak flop rate – this is 

considered good for this algorithm. 
•  Expect more optimizations to be possible going forward. 
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Conclusions: Lessons Learned 

1.  Major code restructurings were required – this is required regardless of 
the parallel API used. 

2.  CUDA was used to get good performance for this complex algorithm – 
directives add an abstraction layer, may not expose all needed 
performance.  Other codes may be different. 

3.  Isolating CUDA-specific constructs in one place in the code is good 
defensive programming to prepare for programming models that may 
change 
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Conclusions: Lessons Learned (2) 

4.  Programming in a dual CPU/GPU programming style helps reduce code 
redundancy and helps with debugging. 

5.  It is challenging to negotiate conflict between heavy code optimization 
and good SWE practice – it’s not always easy to have both, in general 
and specifically using CUDA. 
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Conclusions: Lessons Learned (3) 

6.  It is helpful to develop a performance model based on flop rate, memory 
bandwidth and algorithm tuning knobs, to guide mapping of the 
algorithm to the GPU. 

7.  It is worthwhile to write small codes to test performance for simple 
operations, incorporate this insight into algorithm design. 

8.  It is a challenge to understand what the processor is doing, under the 
abstractions. 

9.  It is difficult to know beforehand what will be the best strategy for 
parallelization or what will be the final outcome – a porting effort could 
easily fail if the GPU has inadequate register space for the planned 
algorithm mapping. 
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Conclusions: Lessons Learned (4) 

10.  Performance can be very sensitive to small tweaks in the code – must 
determine empirically the best way to write the code. 

11.  Often, the GPU porting effort for the algorithm also improves 
performance on the CPU (in this case, in fact, 2X). 

12.  Expert help is useful, e.g., NVIDIA forums. 
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Titan Tier-1 Readiness Apps 

App	   Science	  Area	  

LSMS	   Materials	  

PFLOTRAN	   Earth	  Sciences	  

CAM-‐HOMME	   Climate	  

S3D	   Combus-on	  

LAMMPS	   Biosciences	  

Denovo	   Nuclear	  Energy	  

The OLCF has selected 6 strategic science 
applications for an early readiness port to Titan 
This talk concerns one of these applications: 
“Denovo” 
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Algorithm Stress Points 

1.  Wavefront startup time when not all processors are active yet. 
2.  Communication latency for many small face messages. 
3.  Structuring the algorithm to get good performance at the gridcell level 
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Optimizing for Memory Traffic 
•  Traditionally, algorithm designers optimize 

algorithms to reduce the (floating point) operation 
count. 

•  The more appropriate metric going forward is 
memory accesses (register or cache misses).  
Memory access is the bottleneck. 

•  Guiding principle: reduce memory traffic by doing 
as much work as possible with data values that 
are loaded into the CPU from memory. 

Example: array copy: 
GOOD: 

for ( i=0; i<N; ++i ) { 
    a[i] = b[i]; 
    c[i] = b[i]; 
} 
N loads, 2N stores 

BAD: 

for ( i=0; i<N; ++i ) a[i] = b[i]; 
for ( i=0; i<N; ++i ) c[i] = b[i]; 
 
 
2N loads, 2N stores 

 

Processor 

Registers 

L1 Cache 

L2 Cache 

 

Memory 

Memory 
Access 
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Potential Axes of Parallelism 

1.  Space: X, Y, Z 
2.  Unknowns per gridcell, depending on discretization (4) 
3.  Energy group 
4.  Angle 
5.  Moment 
6.  Octant 
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Further Work 

•  Analysis of code performance with help from NVIDIA revealed that more 
thread parallelism is needed.  To address this, a more efficient implementation 
of spatial thread parallelism is being implemented. 

•  Actual use cases of Denovo sometimes involve only one moment and one 
unknown/gridcell, leaving the GPU warp underpopulated.   To address this, a 
new variant is being developed which applies in-warp parallelism to the energy 
and spatial axes, dealing with the sync issues for spatial parallelism. 


